( The Generalization of Ramanujan's 6-10-8 Identity )
Identities for ( h = 1, 2, 4 )
Let Fn = ( a + b + c )n + ( b + c + d )n -( c + d + a )n -( d + a + b )n +( a - d )n -( b - c )n
and ad = bc, then
64 F6 F10 = 45 F82 ( Ramanujan )
25 F3 F7 = 21 F52 ( Hirschhorn )
5 F3 F8 = 8 F5 F6 ( Chamberland )
16 F6 F7 = 7 F3 F10 ( Chamberland )
F-2 F32 = -3 F-12 F6 ( Chamberland )
245 F3 F11 + 330 F72 = 539 F5 F9 ( Chamberland )
300 F6 F14 + 308 F102 = 525 F8 F12 ( Chamberland )
Let Pn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n
if P1 = P2 = P4 = 0 , then
4 P6 P10 = 3 P82
P3 P7 = P52
P3 P8 = 2 P5 P6
3 P6 P7 = P3 P10
P-2 P32 = -P-12 P6
P3 P11 + 2 P72 = 3 P5 P9
9 P6 P14 + 11 P102 = 18 P8 P12
Let Pn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n , and P0 = 2 ( a1 a2 a3 - b1 b2 b3 ) / (a1 a2 a3 + b1 b2 b3 )
if P1 = P2 = P4 = 0 , then
P5 / P3 = P7 / P5 = P8 / 2P6 = 2P10 / 3P8 = ( P7 / P3 )1/2 = ( P10 / 3P6 )1/2 = (a12 + a22 + a32 ) / 2
P8 / 2P5 = P3 / P0 = P6 / P3 = P10 / 3P7 = (a1 a2 a3 + b1 b2 b3 ) / 2
3P52 / P10 = P32 / P6 = -P-12 / P-2 = P0 = 2 * (a1 a2 a3 - b1 b2 b3 ) / (a1 a2 a3 + b1 b2 b3 )
and
P3 = a1 a2 a3 - b1 b2 b3
P5 = ( a1 a2 a3 - b1 b2 b3 ) (a12 + a22 + a32 ) / 2
P6 = ( a12 a22 a32 - b12 b22 b32 ) / 2
P7 = ( a1 a2 a3 - b1 b2 b3 ) (a12 + a22 + a32 )2 / 4
P8 = ( a12 a22 a32 - b12 b22 b32 ) (a12 + a22 + a32 ) / 2
P10 = 3( a12 a22 a32 - b12 b22 b32 ) (a12 + a22 + a32 )2 / 8
Identities for ( h = 1, 2, 4 ) , ( h = 0, 1, 3 ) , ( h = -1, 0, 2 ) , ( h = -2, -1, 1 )
Let Pn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n , and P0 = 2 ( a1 a2 a3 - b1 b2 b3 ) / (a1 a2 a3 + b1 b2 b3 )
- if P1 = P2 = P4 = 0 , then P3 P8 = 2 P5 P6
if P0 = P1 = P3 = 0 , then P2 P7 = 2 P4 P5
if P-1 = P0 = P2 = 0 , then P1 P6 = 2 P3 P4 + P13 P4 / 12
if P-2 = P-1 = P1 = 0 , then P0 P5 = 2 P2 P3
- if P1 = P2 = P4 = 0 , then P3 P10 = 3 P6 P7
if P0 = P1 = P3 = 0 , then P2 P9 = 3 P5 P6
if P-1 = P0 = P2 = 0 , then P1 P8 = 3 P4 P5 + P12 P3 P4 / 4 + P15 P4 / 240
if P-2 = P-1 = P1 = 0 , then P0 P7 = 3 P3 P4 + P02 P3 P4 / 4
- if P1 = P2 = P4 = 0 , then P32 = P0 P6
if P0 = P1 = P3 = 0 , then P22 = -P-1 P5
if P-1 = P0 = P2 = 0 , then P12 = -P-2 P4
if P-2 = P-1 = P1 = 0 , then P02 = -P-3 P3 + P02 P3 P-3 / 4
- if P1 = P2 = P4 = 0 , then P-12 = -P0 P-2
if P0 = P1 = P3 = 0 , then P-22 = P-1 P-3 - P-14 / 12
if P-1 = P0 = P2 = 0 , then P-32 = P-2 P-4
if P-2 = P-1 = P1 = 0 , then P-42 = P-3 P-5
if P-2 = P-1 = P1 = 0 , then P22 = P0 P4
if P-2 = P-1 = P1 = 0 , then P-3 P2 = -P-4 P3
Identities for ( h = 1, 3, 4 ) , ( h = 0, 2, 3 ) , ( h = -1, 1, 2 ) , ( h = -2, 0, 1 )
Let Pn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n , and P0 = 2 ( a1 a2 a3 - b1 b2 b3 ) / (a1 a2 a3 + b1 b2 b3 )
- if P1 = P3 = P4 = 0 , then P5 P7 = ( P6 - P23 / 12 )2
if P0 = P2 = P3 = 0 , then P4 P6 = ( P5 + P15 / 720 )2 + P12 P42 / 12
- if P1 = P3 = P4 = 0 , then P22 = - P-1 P5 ( 1 - P02 / 4 )
if P0 = P2 = P3 = 0 , then P12 = - P-2 P4 ( 12 / ( P-1 P1 - 12 ) )2
if P-1 = P1 = P2 = 0 , then P02 = - P-3 P3 ( 1 - P02 / 4 )
- if P1 = P3 = P4 = 0 , then P24 P7 = P02 P53
- if P-1 = P1 = P2 = 0 , then P-22 = -P-4 P0
- if P-1 = P1 = P2 = 0 , then P-5 P0 = -2 P-2 P-3
- if P-1 = P1 = P2 = 0 , then P-3 P4 = -P-2 P3
Identities for ( h = 2, 3, 4 ) , ( h = 1, 2, 6 )
Let Pn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n , and P0 = 2 ( a1 a2 a3 - b1 b2 b3 ) / (a1 a2 a3 + b1 b2 b3 )
- if P2 = P3 = P4 = 0 , then P0 P6 = ( P13 / 60 - 12 P5 / P12 )2
- if P1 = P2 = P6 = 0 , then P34 = P0 P4 ( P42 - 2 P3 P5 )
Identities for ( h = 1, 2, 3, 5 ) , ( h = 0, 1, 2, 4 ) , ( h = -1, 0, 1, 3 ) , ( h = -2, -1, 0, 2 ) ,( h = -3, -2, -1, 1 )
Let Pn = (a1n + a2n + a3n + a4n - b1n - b2n - b3n - b4n ) / n , and P0 = 2 ( a1 a2 a3 a4 - b1 b2 b3 b4 ) / (a1 a2 a3 a4 + b1 b2 b3 b4 )
- if P1 = P2 = P3 = P5 = 0 , then P4 P9 = 2 P6 P7
if P0 = P1 = P2 = P4 = 0 , then P3 P8 = 2 P5 P6
if P-1 = P0 = P1 = P3 = 0 , then P2 P7 = 2 P4 P5
if P-2 = P-1 = P0 = P2 = 0 , then P1 P6 = 2 P3 P4 + P13 P4 / 12
if P-3 = P-2 = P-1 = P1 = 0 , then P0 P5 = 2 P2 P3
- if P1 = P2 = P3 = P5 = 0 , then P43 = P0 ( P4 P8 - P62 )
if P0 = P1 = P2 = P4 = 0 , then P33 = P-1 ( P3 P7 - P52 )
if P-1 = P0 = P1 = P3 = 0 , then P23 = P-2 ( P2 P6 - P42 - P24 / 12 )
if P-2 = P-1 = P0 = P2 = 0 , then P13 = P-3 ( P1 P5 - P32 - P13 P3 / 12 + P16 / 720 )
if P-3 = P-2 = P-1 = P1 = 0 , then P03 = P-4 ( P0 P4 - P22 ) ( 1 - P02 / 4 )
- if P1 = P2 = P3 = P5 = 0 , then P7 P02 = -P42 P-1 ( 1 - P02 / 4 )
if P0 = P1 = P2 = P4 = 0 , then P6 P-12 = -P32 P-2
if P-1 = P0 = P1 = P3 = 0 , then P5 P-22 = -P22 P-3
if P-2 = P-1 = P0 = P2 = 0 , then P4 P-32 = -P12 P-4
if P-3 = P-2 = P-1 = P1 = 0 , then P3 P-42 = -P02 P-5 / ( 1 - P02 / 4 )
Identities for ( h = 1, 2, 4, 6 ) , ( h = 0, 1, 3, 5 ) , ( h = -1, 0, 2, 4 ) and ( h = -2, -1, 1, 2 )
Let Pn = (a1n + a2n + a3n + a4n - b1n - b2n - b3n - b4n ) / n , and P0 = 2 ( a1 a2 a3 a4 - b1 b2 b3 b4 ) / (a1 a2 a3 a4 + b1 b2 b3 b4 )
- if P1 = P2 = P4 = P6 = 0 , then P34 P8 = P0 ( P3 P7 - P52 )2
- if P0 = P1 = P3 = P5 = 0 , then P24 P7 = -P-1 ( P2 P6 - P42 - P24 / 12 )2
- if P-1 = P0 = P2 = P4 = 0 , then P14 P6 = -P-2 ( P1 P5 - P32 - P13 P3/ 12 + P16/ 720 )2
- if P-2 = P-1 = P1 = P2 = 0 , then
P-3 P-5 / P-4 = P3 P5 / P4 ( Perfect !!! )
P6 = P52 / P4 + P32 / P0
P7 = P53 / P42 + 2 P3 P4 / P0
P8 = P54 / P43 + 2 P3 P5 / P0 + P42 / P0
Identities for ( k = 1, 3 ) , ( k = 1, 2, 4 ) , ( k = 1, 2, 3, 5 ) and ( k = 1, 2, 3, 4, 6 )
- Define Fn = a1n + a2n + a3n - b1n - b2n - b3n
if F2 = F6 = 0 , then
F42 F10 = 20 ∏i3=1∏j3=1( ai2 - bj2 )
- Let Rn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n
if R1 = R3 = 0 , then R22 R5 = ∏i3=1∏j3=1( ai - bj )
- Let Rn = (a1n + a2n + a3n + a4n - b1n - b2n - b3n - b4n ) / n
if R1 = R2 = R4 = 0 , then R32 ( R52 - R3 R7 ) = ∏i4=1∏j4=1( ai - bj )
- Let Rn = (a1n + a2n + a3n + a4n + a5n - b1n - b2n - b3n - b4n - b5n ) / n
if R1 = R2 = R3 = R5 = 0 , then R43 ( R4 R9 - 2 R6 R7 ) = ∏i5=1∏j5=1( ai - bj )
- Let Rn = (a1n + a2n + a3n + a4n + a5n + a6n - b1n - b2n - b3n - b4n - b5n - b6n ) / n
if R1 = R2 = R3 = R4 = R6 = 0 , then R53 ( R5 R82 + 2 R5 R7 R9 - R11 R52 - R73 ) = ∏i6=1∏j6=1( ai - bj )
Identities for ( k = 1, 2 ) , ( k = 1, 3 ) , ( k = 1, 4 ) and ( k = 1, 5 )
R1 S + R33 - 2R2 R3 R4 + R22 R5 = ∏i3=1∏j3=1( ai - bj )
where S is a polynomial containing 9 items.
if R1 = R2 = 0 , then R33 = ∏i3=1∏j3=1( ai - bj )
if R1 = R3 = 0 , then R22 R5 = ∏i3=1∏j3=1( ai - bj )
if R1 = R4 = 0 , then R33 + R22 R5 = ∏i3=1∏j3=1( ai - bj )
if R1 = R5 = 0 , then R33 - 2R2 R3 R4 = ∏i3=1∏j3=1( ai - bj )
Identities for ( k = 1, 2 ) and ( k = 0, 1 ) , ( k = 1, 2, 3 ) and ( k = 0, 1, 2 ) , ( k = 1, 2, 3, 4 ) and ( k = 1, 2, 3, 4, 5 )
- Define Fn = a1n + a2n + a3n - b1n - b2n - b3n
if F2 = F4 = 0 , then
32 F6 F10 = 15 ( m + 1 ) F82 , where m = ( a14 + a24 + a34 ) / ( a12 + a22 + a32 )2
3 F8 = 4 F6 ( a12 + a22 + a32 )
- Define Fn = a1n + a2n + a3n + a4n - b1n - b2n - b3n - b4n ,and F0 = a1 a2 a3 a4 - b1 b2 b3 b4
if F0 = F2 = F4 = 0 , then
32 F6 F10 = 15 ( m + 1 ) F82 , where m = ( a14 + a24 + a34 + a44 ) / ( a12 + a22 + a32 + a42 )2
- Define Fn = a1n + a2n + a3n + a4n - b1n - b2n - b3n - b4n
if F2 = F4 = F6 = 0 , then
25 F8 F12 = 12 ( m + 1 ) F102 , where m = ( a14 + a24 + a34 + a44 ) / ( a12 + a22 + a32 + a42 )2
4 F10 = 5 F8 ( a12 + a22 + a32 + a42 )
- Define Fn = a1n + a2n + a3n + a4n + a5n - b1n - b2n - b3n - b4n - b5n
if F2 = F4 = F6 = F8 = 0 , then
72 F10 F14 = 35 ( m + 1 ) F122 , where m = ( a14 + a24 + a34 + a44 + a54 ) / ( a12 + a22 + a32 + a42 + a52 )2
5 F12 = 6 F10 ( a12 + a22 + a32 + a42 + a52 )
- Let Rn = (a1n + a2n + a3n - b1n - b2n - b3n ) / n , and R0 = 2 ( a1 a2 a3 - b1 b2 b3 ) / (a1 a2 a3 + b1 b2 b3 )
if R0 = R1 = 0 , then
R2 R4 / R32 + R23 / 2R32 = ( m + 1 ) / 2 , where m = ( a12 + a22 + a32 ) / ( a1 + a2 + a3 )2
R3 / R2 = a1 + a2 + a3
R2 / R-1 = - a1 a2 a3
if R1 = R2 = 0 , then (Piezas)
R3 R5 / R42 = ( m + 1 ) / 2 , where m = ( a12 + a22 + a32 ) / ( a1 + a2 + a3 )2
R4 / R3 = a1 + a2 + a3
R3 / R0 = ( a1 a2 a3 + b1 b2 b3 ) / 2 (Chen)
- Let Rn = (a1n + a2n + a3n + a4n - b1n - b2n - b3n - b4n ) / n , and R0 = 2 ( a1 a2 a3 a4 - b1 b2 b3 b4 ) / (a1 a2 a3 a4 + b1 b2 b3 b4 )
if R0 = R1 = R2 = 0 , then
R3 R5 / R42 = ( m + 1 ) / 2 , where m = ( a12 + a22 + a32 + a42 ) / ( a1 + a2 + a3 + a4 )2
R4 / R3 = a1 + a2 + a3 + a4
R3 / R-1 = - a1 a2 a3 a4
R-2 / R-1 - R-1 / 2 = 1 / a1 + 1 / a2 + 1 / a3 + 1 / a4
if R1 = R2 = R3 = 0 , then (Piezas)
R4 R6 / R52 = ( m + 1 ) / 2 , where m = ( a12 + a22 + a32 + a42 ) / (a1 + a2 + a3 + a4 )2
R5 / R4 = a1 + a2 + a3 + a4
R4 ( 1 + R0 / 2 ) / R0 = - a1 a2 a3 a4 (Chen)
R-1 / R0 - R-1 / 2 = 1 / a1 + 1 / a2 + 1 / a3 + 1 / a4 (Chen)
- Let Rn = (a1n + a2n + a3n + a4n + a5n - b1n - b2n - b3n - b4n - b5n ) / n
if R1 = R2 = R3 = R4 = 0 , then (Piezas)
R5 R7 / R62 = ( m + 1 ) / 2 , where m = ( a12 + a22 + a32 + a42 + a52 ) / ( a1 + a2 + a3 + a4 + a5 )2
- Let Rn = (a1n + a2n + a3n + a4n + a5n + a6n - b1n - b2n - b3n - b4n - b5n - b6n ) / n
if R1 = R2 = R3 = R4 = R5 = 0 , then (Piezas)
R6 R8 / R72 = ( m + 1 ) / 2 , where m = ( a12 + a22 + a32 + a42 + a52 + a62 ) / ( a1 + a2 + a3 + a4 + a5 + a6 )2
Reference for this page
[R3] Tito Piezas III, Generalizing Ramanujan's 6-10-8 Identity
[R4] Tito Piezas III, How to prove this nice 10th power identity for ......
[R5] Tito Piezas III, How did Ramanujan discover this identity?
[R6] Chamberland,M. Ramanujan's 6-8-10 Equation and Beyond , Mathematics Magazine , 2009 , 82(2):135-140
[R7] Berndt,B., Bhargava,S. A Remarkable Identity found in Ramanujan's Third Notebook. Glasgow Mathematical Journal, 34:341-345, 1992.
[R8] Chamberland,M. Using Integer Relations Algorithms for
Finding Relationships among Functions, Tapas in Experimental Mathematics,
Tewodros Amdeberhan and Victor Moll eds., Contemporary Mathematics,
257:127-133, 2008.
[R9] Titus Piezas III, A Collection of Algebraic Identities, 2009
[R10] Tito Piezas III, Theorem for Equal Sums of Like Powers x1^8+x2^8+x3^8+…