- a1 = ( d - 30 f 2 + 4 f g + 2 g 2 ) (d + 6 f 2 + 12 f g + 6 g 2 )
- a2 = ( d + 30 f 2 - 4 f g - 2 g 2 ) (d - 6 f 2 + 4 f g + 10 g 2 )
- a3 = ( d - 18 f 2 + 12 f g - 2 g 2 ) (d + 18 f 2 + 20 f g + 2 g 2 )
- a4 = ( d + 6 f 2 - 4 f g - 10 g 2 ) (d + 18 f 2 - 12 f g + 2 g 2 )
- a5 = ( d - 6 f 2 + 20 f g - 6 g 2 ) (d - 18 f 2 - 20 f g - 2 g 2 )
- a6 = ( d - 6 f 2 - 12 f g - 6 g 2 ) (d + 6 f 2 - 20 f g + 6 g 2 )
- b1 = ( d - 18 f 2 + 12 f g - 2 g 2 ) (d - 6 f 2 + 4 f g + 10 g 2 )
- b2 = ( d + 18 f 2 + 20 f g + 2 g 2 ) (d + 6 f 2 - 20 f g + 6 g 2 )
- b3 = ( d - 6 f 2 + 20 f g - 6 g 2 ) (d + 6 f 2 + 12 f g + 6 g 2 )
- b4 = ( d - 6 f 2 - 12 f g - 6 g 2 ) (d + 30 f 2 - 4 f g - 2 g 2 )
- b5 = ( d + 6 f 2 - 4 f g - 10 g 2 ) (d - 30 f 2 + 4 f g + 2 g 2 )
- b6 = ( d - 18 f 2 - 20 f g - 2 g 2 ) (d + 18 f 2 - 12 f g + 2 g 2 )
- Chen Shuwen notice in 2017 that, for any f and g, when d is large enough, all ai and bi will be positive integers. That is to say, Choudhry's above parametric solution can lead to ideal non-negative integer solution of ( k = 0, 1, 2, 3, 4 ) . Fox example, taking f = 2, g = 1, d = 180, then we have
- [ 209, 273, 357, 637, 713, 841 ] = [ 217, 253, 377, 609, 741, 833 ] ( k = 0, 1, 2, 3, 4 )
- a1 = d2 + 40 d ( 3 f 2 - 2 f g - g 2 ) + 4 ( f + g )2 ( 99 f 2 + 54 f g - 29 g 2 )
- a2 = d2 - 40 d ( 3 f 2 + g 2 ) + 4 ( 99 f 4 - 348 f 3 g - 342 f 2 g 2 + 116 f g3 + 11 g4 )
- a3 = d2 - 160 d f g + 4 ( - 3 f + g )2 ( 31 f 2 + 22 f g - 9 g 2 )
- a4 = d2 - 40 d ( 3 f 2 - 2 f g - g 2 ) - 4 ( - 3 f + g )2 (29 f 2 + 18 f g - 11 g 2 )
- a5 = d2 + 40 d ( 3 f 2 + g 2 ) - 4 ( 261 f 4 - 132 f 3 g - 378 f 2 g 2 + 44 f g3 + 29 g4 )
- a6 = d2 + 160 d f g - 4 ( f + g )2 ( 81 f 2 + 66 f g - 31 g 2 )
- b1 = d2 + 40 d ( 3 f 2 - 2 f g - g 2 )- 4 ( - 3 f + g )2 ( 29 f 2 + 18 f g - 11 g 2 )
- b2 = d2 - 40 d ( 3 f 2 + g 2 ) - 4 ( 261 f 4 - 132 f 3 g - 378 f 2 g 2 + 44 f g3 + 29 g4 )
- b3 = d2 - 160 d f g - 4 ( f + g )2 ( 81 f 2 + 66 f g - 31 g 2 )
- b4 = d2 - 40 d ( 3 f 2 - 2 f g - g 2 ) + 4 ( f + g )2 ( 99 f 2 + 54 f g - 29 g 2 )
- b5 = d2 + 40 d ( 3 f 2 + g 2 ) + 4 ( 99 f 4 - 348 f 3 g - 342 f 2 g 2 + 116 f g3 + 11 g4 )
- b6 = d2 + 160 d f g + 4 ( - 3 f + g)2 ( 31 f 2 + 22 f g - 9 g 2 )
- Chen Shuwen notice that, for any f and g, when d is large enough, all ai and bi will be positive integers. That means this parametric solution can lead to ideal non-negative integer solution of ( k = 1, 2, 3, 4, 6 ) . Fox example, taking f = 2, g = 1, d = 540, we have
- [ 5, 421, 449, 1497, 1533, 1885 ] = [ 13, 345, 525, 1429, 1601, 1877 ] ( k = 1, 2, 3, 4, 6 )
Last revised Mar 19,
2017
Copyright 1997-2017, Chen Shuwen