Ideal non-negative integer solutions: | 164 types found (2023-4-12) |
Ideal integer solutions: | 65 types found (2023-5-12) |
Ideal prime solutions: | 24 types found (2023-4-12) |
11
+ 191 + 201 + 511 + 571 + 801
+ 821 = 21 + 121 + 311 + 401
+ 691 + 711 + 851
12
+ 192 + 202 + 512 + 572 + 802
+ 822 = 22 + 122 + 312 + 402
+ 692 + 712 + 852
13
+ 193 + 203 + 513 + 573 + 803
+ 823 = 23 + 123 + 313 + 403
+ 693 + 713 + 853
14
+ 194 + 204 + 514 + 574 + 804
+ 824 = 24 + 124 + 314 + 404
+ 694 + 714 + 854
15
+ 195 + 205 + 515 + 575 + 805
+ 825 = 25 + 125 + 315 + 405
+ 695 + 715 + 855 16 + 196 + 206 + 516 + 576 + 806 + 826 = 26 + 126 + 316 + 406 + 696 + 716 + 856
|
1k
+ 12k + 25k + 66k + 91k + 130k
+ 174k + 213k + 238k + 279k + 292k
+ 303k
= 4k
+ 6k + 31k + 58k + 105k + 117k
+ 187k + 199k + 246k + 273k + 298k
+ 300k ( k = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
|
2589701k + 2972741k + 6579701k + 9388661k + 9420581k + 15740741k + 15772661k + 18581621k + 22188581k + 22571621k = 2749301k + 2781221k + 6835061k + 8399141k + 10314341k + 14846981k + 16762181k + 18326261k + 22380101k + 22412021k ( Prime solution, k = 1, 2, 3, 4, 5, 6, 7, 8, 9 )
|
On The Generalization of The Prouhet-Tarry-Escott Problem
Last revised on May
12, 2023
Main site: |
(Created and maintained by Chen Shuwen ) |
|
Historical version: |
(Courtesy of Jean-Charles Meyrignac, last updated on May 6, 2001 ) |